Cellular and Molecular Pathways Underlying the Nephrotoxicity of Gadolinium

Author:

Reis Sousa Nícia12,Rocha Susana3,Santos-Silva Alice45,Coimbra Susana145,Valente Maria João45ORCID

Affiliation:

1. TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra PRD 4585-116, Portugal

2. Departamento de Ciências e Tecnologia da Saúde, Instituto Superior Politécnico de Benguela, Benguela 1444, Angola

3. LAQV, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto 4050-313, Portugal

4. Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Farmácia da Universidade do Porto, Porto 4050-313, Portugal

5. UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, Porto 4050-313, Portugal

Abstract

Abstract Mounting evidence on the short- and long-term adverse effects associated with gadolinium [Gd (III)]-based contrast agents used in magnetic resonance imaging have emerged in the past 3 decades. Safety issues arise from the release of Gd (III) from chelates and its deposition in tissues, which is exacerbated in patients with renal disease, because the kidney is the major excretion organ of most of these agents. This study aimed at unveiling the cellular and molecular mechanisms of nephrotoxicity of Gd (III), using an in vitro model of human proximal tubular cells (HK-2 cell line). Cell viability declined in a concentration- and time-dependent manner after exposure to GdCl3·6H2O. The estimated inhibitory concentrations (ICs) eliciting 1%–50% of cell death, after 24 h of exposure, ranged from 3.4 to 340.5 µM. At toxic concentrations, exposure to Gd (III) led to disruption of the oxidative status, mitochondrial dysfunction, cell death by apoptosis, switching to necrosis at higher levels, and autophagic activation. Disturbance of the lipid metabolism was already observed at low-toxicity ICs, with accumulation of lipid droplets, and upregulation of genes related to both lipogenesis and lipolysis. Gd (III)-exposure, even at the subtoxic IC01, increased the expression of modulators of various signaling pathways involved in the development and progression of renal disease, including inflammation, hypoxia, and fibrosis. Our results give new insights into the mechanisms underlying the nephrotoxic potential of Gd (III) and highlight the need to further clarify the risks versus benefits of the Gd (III)-based contrast agents currently in use.

Funder

FCT—Fundação para a Ciência e a Tecnologia

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3