Author:
Brookes Paul S.,Yoon Yisang,Robotham James L.,Anders M. W.,Sheu Shey-Shing
Abstract
The mitochondrion is at the core of cellular energy metabolism, being the site of most ATP generation. Calcium is a key regulator of mitochondrial function and acts at several levels within the organelle to stimulate ATP synthesis. However, the dysregulation of mitochondrial Ca2+homeostasis is now recognized to play a key role in several pathologies. For example, mitochondrial matrix Ca2+overload can lead to enhanced generation of reactive oxygen species, triggering of the permeability transition pore, and cytochrome c release, leading to apoptosis. Despite progress regarding the independent roles of both Ca2+and mitochondrial dysfunction in disease, the molecular mechanisms by which Ca2+can elicit mitochondrial dysfunction remain elusive. This review highlights the delicate balance between the positive and negative effects of Ca2+and the signaling events that perturb this balance. Overall, a “two-hit” hypothesis is developed, in which Ca2+plus another pathological stimulus can bring about mitochondrial dysfunction.
Publisher
American Physiological Society
Cited by
2134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献