DipR, a GntR/FadR-family transcriptional repressor: regulatory mechanism and widespread distribution of the dip cluster for dipicolinic acid catabolism in bacteria

Author:

Jiang Yinhu1,Wang Kexin1,Xu Lu1,Xu Lanyi1,Xu Qimiao1,Mu Yang2,Hong Qing1,He Jian1,Jiang Jiandong1,Qiu Jiguo1ORCID

Affiliation:

1. Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University , Nanjing  210095 , China

2. Taizhou Center for Disease Prevention and Control , Taizhou  225300 , China

Abstract

Abstract Dipicolinic acid is an essential component of bacterial spores for stress resistance, which is released into the environment after spore germination. In a previous study, a dip gene cluster was found to be responsible for the catabolism of dipicolinic acid in Alcaligenes faecalis JQ135. However, the transcriptional regulatory mechanism remains unclear. The present study characterized the new GntR/FadR family transcriptional factor DipR, showing that the dip cluster is transcribed as the six transcriptional units, dipR, dipA, dipBC, dipDEFG, dipH and dipJKLM. The purified DipR protein has six binding sites sharing the 6-bp conserved motif sequence 5′-GWATAC-3′. Site-directed mutations indicated that these motif sequences are essential for DipR binding. Moreover, the four key amino acid residues R63, R67, H196 and H218 of DipR, examined by site-directed mutagenesis, played crucial roles in DipR regulation. Bioinformatics analysis showed that dip clusters including dipR genes are widely distributed in bacteria, are taxon-related, and co-evolved with their hosts. This paper provides new insights into the transcriptional regulatory mechanism of dipicolinic acid degradation by DipR in bacteria.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3