Isolation and Characterization of Superdormant Spores of Bacillus Species

Author:

Ghosh Sonali1,Setlow Peter1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305

Abstract

ABSTRACT Superdormant spores of Bacillus subtilis and Bacillus megaterium were isolated in 4 to 12% yields following germination with high nutrient levels that activated one or two germinant receptors. These superdormant spores did not germinate with the initial nutrients or those that stimulated other germinant receptors, and the superdormant spores' defect was not genetic. The superdormant spores did, however, germinate with Ca 2+ -dipicolinic acid or dodecylamine. Although these superdormant spores did not germinate with high levels of nutrients that activated one or two nutrient germinant receptors, they germinated with nutrient mixtures that activated more receptors, and using high levels of nutrient mixtures activating more germinant receptors decreased superdormant spore yields. The use of moderate nutrient levels to isolate superdormant spores increased their yields; the resultant spores germinated poorly with the initial moderate nutrient concentrations, but they germinated well with high nutrient concentrations. These findings suggest that the levels of superdormant spores in populations depend on the germination conditions used, with fewer superdormant spores isolated when better germination conditions are used. These findings further suggest that superdormant spores require an increased signal for triggering spore germination compared to most spores in populations. One factor determining whether a spore is superdormant is its level of germinant receptors, since spore populations with higher levels of germinant receptors yielded lower levels of superdormant spores. A second important factor may be heat activation of spore populations, since yields of superdormant spores from non-heat-activated spore populations were higher than those from optimally activated spores.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3