KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning

Author:

Li Zhaojun12,Qu Ning34,Zhou Jingyi563,Sun Jingjing34,Ren Qun7,Meng Jingyi7,Wang Guangchao1,Wang Rongyan1,Liu Jin83,Chen Yijie7,Zhang Sulin34,Zheng Mingyue347ORCID,Li Xutong34ORCID

Affiliation:

1. College of Computer and Information Engineering, Dezhou University , Dezhou City  253023 , China

2. Development Department, Suzhou Alphama Biotechnology Co., Ltd , Suzhou City  215000 ,  China

3. Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences ,  555 Zuchongzhi Road , Shanghai  201203 ,  China

4. University of Chinese Academy of Sciences ,  No.19A Yuquan Road , Beijing  100049 ,  China

5. School of Physical Science and Technology, ShanghaiTech University , Shanghai  201210 , China

6. Lingang Laboratory , Shanghai  200031 , China

7. School of Chinese Materia Medica, Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing  210023 , China

8. College of Pharmaceutical Sciences, Zhejiang University , Hangzhou  310058 , China

Abstract

Abstract Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Traditional Chinese Medicine Innovation Joint Research Program

China Postdoctoral Science Foundation

Youth Innovation Promotion Association CAS

Shanghai Municipal Science and Technology Major Project

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3