ProTox 3.0: a webserver for the prediction of toxicity of chemicals

Author:

Banerjee Priyanka12ORCID,Kemmler Emanuel12,Dunkel Mathias1,Preissner Robert1ORCID

Affiliation:

1. Institute for Physiology & Science-IT, Charité – University Medicine Berlin , 10115  Berlin , Germany

2. Member of the KFO 339: Food Allergy and Tolerance (Food@), Clinical Research Unit funded by the German Research Foundation , Berlin, Germany

Abstract

Abstract Interaction with chemicals, present in drugs, food, environments, and consumer goods, is an integral part of our everyday life. However, depending on the amount and duration, such interactions can also result in adverse effects. With the increase in computational methods, the in silico methods can offer significant benefits to both regulatory needs and requirements for risk assessments and the pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox 3.0, which incorporates molecular similarity and machine-learning models for the prediction of 61 toxicity endpoints such as acute toxicity, organ toxicity, clinical toxicity, molecular-initiating events (MOE), adverse outcomes (Tox21) pathways, several other toxicological endpoints and toxicity off-targets. All the ProTox 3.0 models are validated on independent external sets and have shown strong performance. ProTox envisages itself as a complete, freely available computational platform for in silico toxicity prediction for toxicologists, regulatory agencies, computational chemists, and medicinal chemists. The ProTox 3.0 webserver is free and open to all users, and there is no login requirement and can be accessed via https://tox.charite.de. The web server takes a 2D chemical structure as input and reports the toxicological profile of the compound for each endpoint with a confidence score and overall toxicity radar plot and network plot.

Funder

Deutsche Forschungsgemeinschaft

Food allergy and tolerance

Charité - University Medicine Berlin

Publisher

Oxford University Press (OUP)

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3