Exploration of Pharmacological Mechanism of Cinnamomum tamala Essential Oil in Treating Inflammation based on Network Pharmacology, Molecular Modelling, and Experimental Validation

Author:

Mohanty Debajani1,Padhee Sucheesmita1,Jena Sudipta1,Sahoo Ambika1,Panda Pratap Chandra1,Nayak Sanghamitra1,Ray Asit1

Affiliation:

1. Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India

Abstract

Background: Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., also known as Indian bay leaf, holds a distinctive position in complementary and alternative medicinal systems due to its anti-inflammatory properties. However, the active constituents and key molecular targets by which C. tamala essential oil (CTEO) exerts its anti-inflammatory action remain unclear. Objective: The present study used network pharmacology and experimental validation to investigate the mechanism of CTEO in the treatment of inflammation. Methods: GC-MS analysis was used to identify the constituents of CTEO. The key constituents and core targets of CTEO against inflammation were obtained by network pharmacology. The binding mechanism between the active compounds and inflammatory genes was ascertained by molecular docking and molecular dynamics simulation analysis. The pharmacological mechanism predicted by network pharmacology was verified in lipopolysaccharide-stimulated murine macrophage (RAW 264.7) cell lines. Results: Forty-nine constituents were identified by GC-MS analysis, with 44 constituents being drug-like candidates. A total of 549 compounds and 213 inflammation-related genes were obtained, revealing 68 overlapping genes between them. Compound target network analysis revealed cinnamaldehyde as the core bioactive compound with the highest degree score. PPI network analysis demonstrated Il-1β, TNF-α, IL8, IL6 and TLR4 as key hub anti-inflammatory targets. KEGG enrichment analysis revealed a Toll-like receptor signalling pathway as the principally regulated pathway associated with inflammation. A molecular docking study showed that cinnamaldehyde strongly interacted with the Il-1β, TNF-α and TLR-4 proteins. Molecular dynamics simulations and MMPBSA analysis revealed that these complexes are stable without much deviation and have better free energy values. In cellular experiments, CTEO showed no cytotoxic effects on RAW 264.7 murine macrophages. The cells treated with LPS exhibited significant reductions in NO, PGE2, IL-6, TNF-α, and IL-1β levels following treatment with CTEO. Additionally, CTEO treatment reduced the ROS levels and increased the antioxidant enzymes such as SOD, GSH, GPx and CAT. Immunofluorescence analysis revealed that CTEO inhibited LPS-stimulated NF-κB nuclear translocation. The mRNA expression of TLR4, MyD88 and TRAF6 in the CTEO group decreased significantly compared to the LPS-treated group. Conclusion: The current findings suggest that CTEO attenuates inflammation by regulating TLR4/MyD88/NF- κB signalling pathway.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3