Outlier detection for questionnaire data in biobanks

Author:

Sakurai Rieko12,Ueki Masao12,Makino Satoshi13,Hozawa Atsushi23,Kuriyama Shinichi234,Takai-Igarashi Takako23,Kinoshita Kengo25,Yamamoto Masayuki23,Tamiya Gen12

Affiliation:

1. Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

2. Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan

3. Graduate School of Medicine, Tohoku University, Sendai, Japan

4. International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan

5. Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract

Abstract Background Biobanks increasingly collect, process and store omics with more conventional epidemiologic information necessitating considerable effort in data cleaning. An efficient outlier detection method that reduces manual labour is highly desirable. Method We develop an unsupervised machine-learning method for outlier detection, namely kurPCA, that uses principal component analysis combined with kurtosis to ascertain the existence of outliers. In addition, we propose a novel regression adjustment approach to improve detection, namely the regression adjustment for data by systematic missing patterns (RAMP). Result Application to epidemiological record data in a large-scale biobank (Tohoku Medical Megabank Organization, Japan) shows that a combination of kurPCA and RAMP effectively detects known errors or inconsistent patterns. Conclusions We confirm through the results of the simulation and the application that our methods showed good performance. The proposed methods are useful for many practical analysis scenarios.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

Reference34 articles.

1. A review of data quality assessment methods for public health information systems;Chen;IJERPH,2014

2. Data cleaning: detecting, diagnosing, and editing data abnormalities;Van den Broeck;PLoS Med,2005

3. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age;Sudlow;PLoS Med,2015

4. The Tohoku Medical Megabank project: design and mission;Kuriyama;J Epidemiol,2016

5. A standard operating procedure for outlier removal in large-sample epidemiological transcriptomics datasets;Bøvelstad;BioRxiv,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3