Cross-Sectional Analysis of Impulse Indicator Saturation Method for Outlier Detection Estimated via Regularization Techniques with Application of COVID-19 Data

Author:

Muhammadullah Sara1ORCID,Urooj Amena1,Mengal Muhammad Hashim2,Khan Shahzad Ali3,Khalaj Fereshteh4ORCID

Affiliation:

1. Department of Economics and Econometrics, Pakistan Institute of Development Economics, Islamabad, Pakistan

2. World Health Organization, Pakistan

3. Vice-Chancellor of Health Services Academy Islamabad, Pakistan

4. Department of Mathematics and Statistics, Parand and Robat Karim Branch, Islamic Azad University, Tehran, Iran

Abstract

Impulse indicator saturation is a popular method for outlier detection in time series modeling, which outperforms the least trimmed squares (LTS), M-estimator, and MM-estimator. However, using the IIS method for outlier detection in cross-sectional analysis has remained unexplored. In this paper, we probe the feasibility of the IIS method for cross-sectional data. Meanwhile, we are interested in forecasting performance and covariate selection in the presence of outliers. IIS method uses Autometrics techniques to estimate the covariates and outlier as the number of covariates P > n observations. Besides Autometrics, regularization techniques are a well-known method for covariate selection and forecasting in high-dimensional analysis. However, the efficiency of regularization techniques for the IIS method has remained unexplored. For this purpose, we explore the efficiency of regularization techniques for out-of-sample forecast in the presence of outliers with 6 and 4 standard deviations (SD) and orthogonal covariates. The simulation results indicate that SCAD and MCP outperform in forecasting and covariate selection with 4 SD (20% and 5% outliers) compared to Autometrics. However, LASSO and AdaLASSO select more covariates than SCAD and MCP and possess higher RMSE. Overall, regularization techniques possess the least RMSE than Autometrics, as Autometrics possesses the least average gauge at the cost of the least average potency. We use COVID-19 cross-sectional data collected from 1 July 2021 to 30 September 2021 for real data analysis. The SCAD and MCP select CRP level, gender, and other comorbidities as an important predictor of hospital stay with the least out-of-sample RMSE of 7.45 and 7.50, respectively.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference45 articles.

1. Econometric applications of high-breakdown robust regression techniques

2. Outliers in multilevel data

3. Comparison of robust regression methods in linear regression;Ö. G. Alma;International Journal of Contemporary Mathematical Sciences,2011

4. Least Median of Squares Regression

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3