Ultraviolet radiation causes leaf warming due to partial stomatal closure

Author:

Williams Tom B1,Dodd Ian C1,Sobeih Wagdy Y2,Paul Nigel D1

Affiliation:

1. Lancaster University Lancaster Environment Centre, , Lancaster LA1 4YQ, UK

2. Lancaster University Arid Agritec Ltd. Gordon Manley Building, Lancaster Environmental Centre, , Lancaster LA1 4YQ, UK

Abstract

Abstract Variation in solar ultraviolet radiation induces a wide-range of plant responses from the cellular to whole-plant scale. We demonstrate here for the first time that partial stomatal closure caused by ultraviolet radiation exposure results in significant increases in leaf temperature. Significant leaf warming in response to ultraviolet radiation was consistent in tomato (Solanum lycopersicum L.) across different experimental approaches. In field experiments where solar ultraviolet radiation was attenuated using filters, exposure to ultraviolet radiation significantly decreased stomatal conductance and increased leaf temperature by up to 1.5°C. Using fluorescent lamps to provide ultraviolet radiation treatments, smaller but significant increases in leaf temperature due to decreases in stomatal conductance occurred in both multi-day controlled environment growth room experiments and short-term (<2 hours) climate cabinet irradiance response experiments. We show that leaf warming due to partial stomatal closure is independent of any direct warming effects of ultraviolet radiation manipulations. We discuss the implications of ultraviolet radiation-induced warming both for horticultural crop production and understanding broader plant responses to ultraviolet radiation.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3