Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba

Author:

Chen Peng1,Chen Lichuan1,Ye Xia2,Tan Bin2,Zheng Xianbo2,Cheng Jun2,Wang Wei2,Yang Qiqi1,Zhang Yu1,Li Jidong1ORCID,Feng Jiancan21ORCID

Affiliation:

1. Henan Agricultural University College of Forestry, , 95 Wenhua Road, Zhengzhou 450002, China

2. Henan Agricultural University College of Horticulture, , 95 Wenhua Road, Zhengzhou 450002, China

Abstract

Abstract The jujube witches’ broom (JWB) phytoplasma is associated with witches’ broom, dwarfism, and smaller leaves in jujube, resulting in yield losses. In this study, eight putative JWB effector proteins were identified from potential mobile units of the JWB genome. Among them, Zaofeng6 induced witches’ broom symptoms in Arabidopsis and jujube. Zaofeng6-overexpressing Arabidopsis and unrooted jujube transformants displayed witches’ broom-like shoot proliferation. Transient expression of Zaofeng6 induced hypersensitive response like cell death and expression of hypersensitive response marker genes, like harpin-induced gene 1 (H1N1), and the pathogenesis-related genes PR1, PR2, and PR3 in transformed Nicotiana benthamiana leaves, suggesting that Zaofeng6 could be a virulence effector. Yeast two-hybrid library screening and bimolecular fluorescence complementation confirmed that Zaofeng6 interacts with ZjTCP7 through its first two α-helix domains in the cell nuclei. ZjTCP7 mRNA and protein abundance decreased in Zaofeng6 transgenic jujube seedlings. The expression of some genes in the strigolactone signaling pathway (ZjCCD7, ZjCCD8, and CYP711A1) were down-regulated in jujube shoots overexpressing Zaofeng6 and in zjtcp7 CRISPR/Cas9 mutants. Zaofeng6 induces shoot proliferation through decreased expression of ZjTCP7 at the transcriptional and translational levels.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3