Simulating within host human immunodeficiency virus 1 genome evolution in the persistent reservoir

Author:

Jones Bradley R12ORCID,Joy Jeffrey B123ORCID

Affiliation:

1. BC Centre for Excellence in HIV/AIDS, 608-1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada

2. Bioinformatics Program, University of British Columbia, 100-570 West 7th Avenue, Vancouver, BC V5T 4S6, Canada

3. Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Vancouver, BC V5Z 1M9, Canada

Abstract

Abstract The complexities of viral evolution can be difficult to elucidate. Software simulating viral evolution provides powerful tools for exploring hypotheses of viral systems, especially in situations where thorough empirical data are difficult to obtain or parameters of interest are difficult to measure. Human immunodeficiency virus 1 (HIV-1) infection has no durable cure; this is primarily due to the virus’ ability to integrate into the genome of host cells, where it can remain in a transcriptionally latent state. An effective cure strategy must eliminate every copy of HIV-1 in this ‘persistent reservoir’ because proviruses can reactivate, even decades later, to resume an active infection. However, many features of the persistent reservoir remain unclear, including the temporal dynamics of HIV-1 integration frequency and the longevity of the resulting reservoir. Thus, sophisticated analyses are required to measure these features and determine their temporal dynamics. Here, we present software that is an extension of SANTA-SIM to include multiple compartments of viral populations. We used the resulting software to create a model of HIV-1 within host evolution that incorporates the persistent HIV-1 reservoir. This model is composed of two compartments, an active compartment and a latent compartment. With this model, we compared five different date estimation methods (Closest Sequence, Clade, Linear Regression, Least Squares, and Maximum Likelihood) to recover the integration dates of genomes in our model’s HIV-1 reservoir. We found that the Least Squares method performed the best with the highest concordance (0.80) between real and estimated dates and the lowest absolute error (all pairwise t tests: P < 0.01). Our software is a useful tool for validating bioinformatics software and understanding the dynamics of the persistent HIV-1 reservoir.

Funder

National Institutes of Health R21

Canadian Institutes of Health Research Project

Canadian Institutes of Health Research Doctoral Research Award

Publisher

Oxford University Press (OUP)

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3