Source–sink relationships during grain filling in wheat in response to various temperature, water deficit, and nitrogen deficit regimes

Author:

Fang Liang1ORCID,Struik Paul C1ORCID,Girousse Christine2ORCID,Yin Xinyou1ORCID,Martre Pierre3ORCID

Affiliation:

1. Centre for Crop Systems Analysis, Wageningen University & Research , Wageningen , The Netherlands

2. GDEC, INRAE, Clermont Auvergne University , Clermont-Ferrand , France

3. LEPSE, Université Montpellier, INRAE, Institut Agro Montpellier , Montpellier , France

Abstract

Abstract Grain filling is a critical process for improving crop production under adverse conditions caused by climate change. Here, using a quantitative method, we quantified post-anthesis source–sink relationships of a large dataset to assess the contribution of remobilized pre-anthesis assimilates to grain growth for both biomass and nitrogen. The dataset came from 13 years of semi-controlled field experimentation, in which six bread wheat genotypes were grown at plot scale under contrasting temperature, water, and nitrogen regimes. On average, grain biomass was ~10% higher than post-anthesis above-ground biomass accumulation across regimes and genotypes. Overall, the estimated relative contribution (%) of remobilized assimilates to grain biomass became increasingly significant with increasing stress intensity, ranging from virtually nil to 100%. This percentage was altered more by water and nitrogen regimes than by temperature, indicating the greater impact of water or nitrogen regimes relative to high temperatures under our experimental conditions. Relationships between grain nitrogen demand and post-anthesis nitrogen uptake were generally insensitive to environmental conditions, as there was always significant remobilization of nitrogen from vegetative organs, which helped to stabilize the amount of grain nitrogen. Moreover, variations in the relative contribution of remobilized assimilates with environmental variables were genotype dependent. Our analysis provides an overall picture of post-anthesis source–sink relationships and pre-anthesis assimilate contributions to grain filling across (non-)environmental factors, and highlights that designing wheat adaptation to climate change should account for complex multifactor interactions.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3