Maximum power point tracking using decision-tree machine-learning algorithm for photovoltaic systems

Author:

Mahesh P Venkata12ORCID,Meyyappan S13,Alla RamaKoteswara Rao2

Affiliation:

1. Department of Electronics and Instrumentation Engineering, Annamalai University , Chidambaram , India

2. Department of EEE, RVR & JC College of Engineering , Guntur , India

3. Department of Instrumentation Engineering, Madras Institute of Technology , Chennai , India

Abstract

Abstract This work presents a machine-learning (ML) algorithm for maximum power point tracking (MPPT) of an isolated photovoltaic (PV) system. Due to the dynamic nature of weather conditions, the energy generation of PV systems is non-linear. Since there is no specific method for effectively dealing with the non-linear data, the use of ML methods to operate the PV system at its maximum power point (MPP) is desirable. A strategy based on the decision-tree (DT) regression ML algorithm is proposed in this work to determine the MPP of a PV system. The data were gleaned from the technical specifications of the PV module and were used to train and test the DT. These algorithms predict the maximum power available and the associated voltage of the module for a defined amount of irradiance and temperature. The boost converter duty cycle was determined using predicted values. The simulation was carried out for a 10-W solar panel with a short-circuit current of 0.62 A and an open-circuit voltage of 21.50 V at 1000 W/m2 irradiance and a temperature of 25°C. The simulation findings demonstrate that the proposed method compelled the PV panel to work at the MPP predicted by DTs compared to the existing topologies such as β-MPPT, cuckoo search and artificial neural network results. From the proposed algorithm, efficiency has been improved by >93.93% in the steady state despite erratic irradiance and temperatures.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference34 articles.

1. Solar photovoltaic modeling and simulation: as a renewable energy solution;Kumar;Energy Reports,2018

2. Maximum power point tracking of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for boost converter and quadratic boost converter;Dorji;Materials Today: Proceedings,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3