Hybrid Grey Wolf Optimizer for Efficient Maximum Power Point Tracking to Improve Photovoltaic Efficiency

Author:

Alsharafa Nabeel S.,Shanmugam Selvanayaki Kolandapalayam1,Vani Bojja2,P Balaji3,S Gokulraj4,P.V.V.S Srinivas5

Affiliation:

1. Department of the Mathematics and Computer Science, Ashland University, Ashland, Ohio, USA.

2. Department of Computer Science and Engineering, Kakatiya Institute of Technology and Science, Warangal, Telangana, India.

3. Department of Computer Science and Engineering (Cyber Security), Sri Shakti Institute of Engineering and Technology, Chinniyampalayam, Coimbatore, Tamil Nadu, India.

4. Department of Computer Science and Engineering, Velalar College of Engineering and Technology, Erode, Tamil Nadu, India.

5. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.

Abstract

Today, the demand for Renewable Energy (RE) sources has increased a lot; out of all Renewable Energy Sources (RES), Solar Energy (SE) has emerged as a better solution due to its sustainability and abundance. However, energy sources from the sun directly depend on the efficiency of the photovoltaic (PV) systems employed, whose efficiency depends on the variability of solar irradiance and temperature. So harvesting the maximum output from PV panels requires optimized Maximum Power Point Tracking (MPPT) systems. The traditional MPPT systems that involved Perturb and Observe (P&O) and Incremental Conductance (IncCond) are the most widely used models. However, those models have limited efficiency due to rapidly changing environmental conditions and their tendency to oscillate around the Maximum PowerPoint (MPP). This paper proposes a Hybrid Heuristic Model (HHM) called the Hybrid Grey Wolf Optimizer (HGWO) Algorithm, which employs the Genetic Algorithm (GA) model for optimizing the Grey Wolf Optimizer (GWO) algorithm for effectively utilizing MPPT in PV systems. The simulation decreases fluctuation, boosting how the system responds to shifts in the surrounding atmosphere. The framework evolved through several experiments, and its ability to perform was assessed concerning the results of different models for the factors that were considered seriously throughout several solar radiation and temperature scenarios. During all of the tests, the recommended HGWO model scored more effectively than the other models. This succeeded by accurately following the MPP and boosting the power supply.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3