Using Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry to Depth Profile Nanoparticles in Polymer Nanocomposites

Author:

Zhang Aria C12ORCID,Maguire Shawn M1ORCID,Ford Jamie T3ORCID,Composto Russell J12

Affiliation:

1. Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, USA

2. Materials Research Science & Engineering Center (MRSEC), University of Pennsylvania, 3231 Walnut Street, Philadelphia 19104, USA

3. Nanoscale Characterization Facility, University of Pennsylvania, 3205 Walnut Street, Philadelphia, Pennsylvania 19104, USA

Abstract

Abstract Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a versatile surface-sensitive technique for characterizing both hard and soft matter. Its chemical and molecular specificity, high spatial resolution, and superior sensitivity make it an ideal method for depth profiling polymeric systems, including those comprised of both inorganic and organic constituents (i.e., polymer nanocomposites, PNCs). To best utilize ToF-SIMS for characterizing PNCs, experimental conditions must be optimized to minimize challenges such as the matrix effect and charge accumulation. Toward that end, we have successfully used ToF-SIMS with a Xe+ focused ion beam to depth profile silica nanoparticles grafted with poly(methyl methacrylate) (PMMA-NP) in a poly(styrene-ran-acrylonitrile) matrix film by selecting conditions that address charge compensation and the primary incident beam angles. By tracking the sputtered Si+ species and fitting the resultant concentration profile, the diffusion coefficient of PMMA-NP was determined to be D = 2.4 × 10−14 cm2/s. This value of D lies between that measured using Rutherford backscattering spectrometry (6.4 × 10−14 cm2/s) and the value predicted by the Stokes–Einstein model (2.5 × 10−15 cm2/s). With carefully tuned experimental parameters, ToF-SIMS holds great potential for quantitatively characterizing the nanoparticles at the surfaces and interfaces within PNC materials as well as soft matter in general.

Funder

NSF

DMR Polymers Program

University of Pennsylvania

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3