Statistical Comparison of Substructures in Pure Aluminum Before and After Creep Deformation, Based on EBSD Image Data

Author:

Rieder Philipp1ORCID,Petrich Lukas1ORCID,Serrano-Munoz Itziar2ORCID,Fernández Ricardo3ORCID,Bruno Giovanni2ORCID,Schmidt Volker1ORCID

Affiliation:

1. Institute of Stochastics, Ulm University , Helmholtzsraße 18 , D-89069 Ulm, Germany

2. Bundesanstalt für Materialforschung und -prüfung , Unter den Eichen 87 , D-12200 Berlin, Germany

3. Centro Nacional de Investigaciones Metalurgicas (CENIM) , C.S.I.C., Av. de Gregorio del Amo 8 , E-28040 Madrid, Spain

Abstract

Abstract Electron backscatter diffraction (EBSD) images of extruded pure aluminum were statistically analyzed to investigate creep-induced subgrain structures after applying two different levels of creep stress, corresponding to the power law (PL) and power-law breakdown (PLB) regimes. Kernel average misorientation analysis of EBSD measurements revealed 2D morphologies, which were subdivided by a multi-step segmentation procedure into subgranular arrangements. Various descriptors were employed to characterize the “subgrains” quantitatively, including their size, shape, spatial arrangement, and crystallographic orientation. In particular, the analysis of the orientations of subgrains was conducted by neglecting rotations around the loading axis. This approach facilitated the individual investigation of the {001} and {111} subgrain families with respect to the loading axis for two investigated stress levels plus a reference specimen. For the PL regime, the statistical analysis of subgrain descriptors computed from segmented image data revealed a similar degree of strain accumulation for {111} and {001} subgrains. In contrast, for the PLB regime, the analyzed descriptors indicate that {111} subgrains tend to accumulate significantly more strain than {001} ones. These observations suggest that the mechanisms leading to PLB may be associated with strain localization dependent on intergranular stress, hindering the recovery process within {111} grains.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3