Non-linear dynamics of hydrodynamic tori as a model of oscillations and bending waves in astrophysical discs

Author:

Fairbairn Callum W1ORCID,Ogilvie Gordon I1ORCID

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

ABSTRACT Understanding oscillations and waves in astrophysical fluid bodies helps to elucidate their observed variability and the underlying physical mechanisms. Indeed, global oscillations and bending modes of accretion discs or tori may be relevant to quasi-periodicity and warped structures around compact objects. While most studies rely on linear theory, observationally significant, non-linear dynamics is still poorly understood, especially in Keplerian discs for which resonances typically demand a separate treatment. In this work, we introduce a novel analytical model which exactly solves the ideal, compressible fluid equations for a non-self-gravitating elliptical cylinder within a local shearing sheet. The aspect ratio of the ring is an adjustable parameter, allowing a continuum of models ranging from a torus of circular cross-section to a thin ring. We restrict attention to flow fields which are a linear function of the coordinates, capturing the lowest order global motions and reducing the dynamics to a set of coupled ordinary differential equations (ODEs). This system acts as a framework for exploring a rich range of hydrodynamic phenomena in both the large amplitude and Keplerian regimes. We demonstrate the connection between tilting tori and warped discs within this model, showing that the linear modes of the ring correspond to oppositely precessing global bending modes. These are further confirmed within a numerical grid based simulation. Crucially, the ODE system developed here allows for a more tractable investigation of non-linear dynamics. This will be demonstrated in a subsequent paper which evidences mode coupling between warping and vertical motions in thin tilted rings.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3