Non-linear resonant torus oscillations as a model of Keplerian disc warp dynamics

Author:

Fairbairn Callum W1ORCID,Ogilvie Gordon I1ORCID

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

ABSTRACT Observations of distorted discs have highlighted the ubiquity of warps in a variety of astrophysical contexts. This has been complemented by theoretical efforts to understand the dynamics of warp evolution. Despite significant efforts to understand the dynamics of warped discs, previous work fails to address arguably the most prevalent regime – non-linear warps in Keplerian discs for which there is a resonance between the orbital, epicyclic and vertical oscillation frequencies. In this work, we implement a novel non-linear ring model, developed recently by Fairbairn and Ogilvie, as a framework for understanding such resonant warp dynamics. Here, we uncover two distinct non-linear regimes as the warp amplitude is increased. Initially, we find a smooth modulation theory that describes warp evolution in terms of the averaged Lagrangian of the oscillatory vertical motions of the disc. This hints towards the possibility of connecting previous warp theory under a generalized secular framework. Upon the warp amplitude exceeding a critical value, which scales as the square root of the aspect-ratio of our ring, the disc enters into a bouncing regime with extreme vertical compressions twice per orbit. We develop an impulsive theory that predicts special retrograde and prograde precessing warped solutions, which are identified numerically using our full equation set. Such solutions emphasize the essential activation of non-linear vertical oscillations within the disc and may have important implications for energy and warp dissipation. Future work should search for this behaviour in detailed numerical studies of the internal flow structure of warped discs.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3