The effect of cooling on the accretion of circumprimary discs in merging supermassive black hole binaries

Author:

Fontecilla Camilo1ORCID,Lodato Giuseppe2ORCID,Cuadra Jorge13ORCID

Affiliation:

1. Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile

2. Dipartimento di Fisica dell’Università degli Studi di Milano, Via Celoria 16, Milano I-20133, Italy

3. Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Avenida Padre Hurtado 750, Viña del Mar 2562340, Chile

Abstract

ABSTRACT At the final stages of a supermassive black hole coalescence, the emission of gravitational waves will efficiently remove energy, and angular momentum from the binary orbit, allowing the separation between the compact objects to shrink. In the scenario where a circumprimary disc is present, a squeezing phase will develop, in which the tidal interaction between the disc and the secondary black hole could push the gas inwards, enhancing the accretion rate on to the primary and producing what is known as an electromagnetic precursor. In this context, using 3D hydrodynamic simulations, we study how an adiabatic circumprimary accretion disc responds to the varying gravitational potential as the secondary falls on to the more massive object. We included a cooling prescription controlled by the parameter β = Ωtcool, which will determine how strong the final accretion rate is: a hotter disc is thicker, and the tidal interaction is suppressed for the gas outside the binary plane. Our main results are that for scenarios where the gas cannot cool fast enough (β ≥ 30), the disc becomes thick and renders the system invisible, while for β ≤ 10 the strong cooling blocks any leakage on to the secondary’s orbit, allowing an enhancement in the accretion rate of two orders of magnitude stronger than the average through the rest of the simulation.

Funder

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3