Measuring the topology of reionization with Betti numbers

Author:

Giri Sambit K12ORCID,Mellema Garrelt2ORCID

Affiliation:

1. Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

2. Department of Astronomy and Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

Abstract

ABSTRACT The distribution of ionized hydrogen during the epoch of reionization (EoR) has a complex morphology. We propose to measure the 3D topology of ionized regions using the Betti numbers. These quantify the topology using the number of components, tunnels, and cavities in any given field. Based on the results for a set of reionization simulations we find that the Betti numbers of the ionization field show a characteristic evolution during reionization, with peaks in the different Betti numbers characterizing different stages of the process. The shapes of their evolutionary curves can be fitted with simple analytical functions. We also observe that the evolution of the Betti numbers shows a clear connection with the percolation of the ionized and neutral regions and differs between different reionization scenarios. Through these properties, the Betti numbers provide a more useful description of the topology than the widely studied Euler characteristic or genus. The morphology of the ionization field will be imprinted on the redshifted 21-cm signal from the EoR. We construct mock image cubes using the properties of the low-frequency element of the future Square Kilometre Array and show that we can extract the Betti numbers from such data sets if an observation time of 1000 h is used. Even for a much shorter observation time of 100 h, some topological information can be extracted for the middle and later stages of reionization. We also find that the topological information extracted from the mock 21-cm observations can put constraints on reionization models.

Funder

Swedish Research Council

PRACE

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The 21-cm signal during the end stages of reionization;Monthly Notices of the Royal Astronomical Society;2024-08-20

2. Inferring astrophysical parameters using the 2D cylindrical power spectrum from reionization;Monthly Notices of the Royal Astronomical Society;2024-08-17

3. How informative are summaries of the cosmic 21 cm signal?;Astronomy & Astrophysics;2024-08

4. Enhancing Morphological Measurements of the Cosmic Web with Delaunay Tessellation Field Estimation;The Astrophysical Journal Supplement Series;2024-08-01

5. A simplex path integral and a simplex renormalization group for high-order interactions *;Reports on Progress in Physics;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3