A simplex path integral and a simplex renormalization group for high-order interactions *

Author:

Cheng AohuaORCID,Xu YunhuiORCID,Sun PeiORCID,Tian YangORCID

Abstract

Abstract Modern theories of phase transitions and scale invariance are rooted in path integral formulation and renormalization groups (RGs). Despite the applicability of these approaches in simple systems with only pairwise interactions, they are less effective in complex systems with undecomposable high-order interactions (i.e. interactions among arbitrary sets of units). To precisely characterize the universality of high-order interacting systems, we propose a simplex path integral and a simplex RG (SRG) as the generalizations of classic approaches to arbitrary high-order and heterogeneous interactions. We first formalize the trajectories of units governed by high-order interactions to define path integrals on corresponding simplices based on a high-order propagator. Then, we develop a method to integrate out short-range high-order interactions in the momentum space, accompanied by a coarse graining procedure functioning on the simplex structure generated by high-order interactions. The proposed SRG, equipped with a divide-and-conquer framework, can deal with the absence of ergodicity arising from the sparse distribution of high-order interactions and can renormalize a system with intertwined high-order interactions at the p-order according to its properties at the q-order ( p q ). The associated scaling relation and its corollaries provide support to differentiate among scale-invariant, weakly scale-invariant, and scale-dependent systems across different orders. We validate our theory in multi-order scale-invariance verification, topological invariance discovery, organizational structure identification, and information bottleneck analysis. These experiments demonstrate the capability of our theory to identify intrinsic statistical and topological properties of high-order interacting systems during system reduction.

Funder

The Artificial and General Intelligence Research Program of Guo Qiang Research Institute at Tsinghua University

The Huawei Innovation Research Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3