Peculiar velocity estimation from kinetic SZ effect using deep neural networks

Author:

Wang Yuyu12ORCID,Ramachandra Nesar34,Salazar-Canizales Edgar M56,Feldman Hume A2,Watkins Richard7,Dolag Klaus89

Affiliation:

1. Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

2. Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA

3. High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA

4. Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA

5. Departamento de Física, Universidad de Sonora, 83000 Hermosillo, Mexico

6. Department of Physics, University of Arizona, Tucson, AZ 85721, USA

7. Department of Physics, Willamette University, Salem, OR 97301, USA

8. University Observatory Munich, Scheinerstr 1, D-81679 Munich, Germany

9. Max-Planck-Institut für Astrophysik (MPA), Karl-Schwarzschild Strasse 1, D-85748 Garching bei München, Germany

Abstract

ABSTRACT The Sunyaev–Zel’dolvich (SZ) effect is expected to be instrumental in measuring velocities of distant clusters in near future telescope surveys. We simplify the calculation of peculiar velocities of galaxy clusters using deep learning frameworks trained on numerical simulations to avoid the independent estimation of the optical depth. Images of distorted photon backgrounds are generated for idealized observations using one of the largest cosmological hydrodynamical simulations, the Magneticum simulations. The model is tested to determine its ability of estimating peculiar velocities from future kinetic SZ observations under different noise conditions. The deep learning algorithm displays robustness in estimating peculiar velocities from kinetic SZ effect by an improvement in accuracy of about 17 per cent compared to the analytical approach.

Funder

Extreme Science and Engineering Discovery Environment

National Science Foundation

Argonne National Laboratory

U.S. Department of Energy

NSF

DOE

Deutsche Forschungsgemeinschaft

Leibniz Supercomputer Center

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3