Peculiar Velocity Reconstruction from Simulations and Observations Using Deep Learning Algorithms

Author:

Wang YuyuORCID,Yang XiaohuORCID

Abstract

Abstract In this paper, we introduce a U-Net model of deep learning algorithms for reconstructions of the 3D peculiar velocity field, which simplifies the reconstruction process with enhanced precision. We test the adaptability of the U-Net model with simulation data under more realistic conditions, including the redshift space distortion effect and halo mass threshold. Our results show that the U-Net model outperforms the analytical method that runs under ideal conditions, with a 16% improvement in precision, 13% in residuals, 18% in correlation coefficient, and 27% in average coherence. The deep learning algorithm exhibits exceptional capacities to capture velocity features in nonlinear regions and substantially improve reconstruction precision in boundary regions. We then apply the U-Net model trained under Sloan Digital Sky Survey (SDSS) observational conditions to the SDSS Data Release 7 data for observational 3D peculiar velocity reconstructions.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3