Bridges and gaps at low-eccentricity first-order resonances

Author:

Antoniadou Kyriaki I1,Libert Anne-Sophie2

Affiliation:

1. Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

2. naXys, Department of Mathematics, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium

Abstract

ABSTRACT Previous works on the divergence of first-order mean-motion resonances (MMRs) have studied in detail the extent of the pericentric and apocentric libration zones of adjacent first-order MMRs, highlighting possible bridges between them in the low eccentricity circular restricted three-body problem. Here, we describe the previous results in the context of periodic orbits and show that the so-called circular family of periodic orbits is the path that can drive the passage between neighbouring resonances under dissipative effects. We illustrate that the circular family can bridge first-order and higher order resonances, while its gaps at first-order MMRs can serve as boundaries that stop transitions between resonances. In particular, for the Sun–asteroid–Jupiter problem, we show that, during the migration of Jupiter in the protoplanetary disc, a system initially evolving below the apocentric branch of a first-order MMR follows the circular family and can either be captured into the pericentric branch of an adjacent first-order MMR if the orbital migration is rapid or in a higher order MMR in case of slow migration. Radial transport via the circular family can be extended to many small body and planetary system configurations undergoing dissipative effects (e.g. tidal dissipation, solar mass-loss, and gas drag).

Funder

ESF

IKY

Fonds De La Recherche Scientifique - FNRS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-perturbative investigation of low-eccentricity exterior mean motion resonances;Monthly Notices of the Royal Astronomical Society;2023-02-14

2. Analysis of Resonance Transition Periodic Orbits in the Circular Restricted Three-Body Problem;Applied Sciences;2022-09-06

3. Proximity of exoplanets to first-order mean-motion resonances;Monthly Notices of the Royal Astronomical Society;2022-06-09

4. New results on orbital resonances;Proceedings of the International Astronomical Union;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3