Proximity of exoplanets to first-order mean-motion resonances

Author:

Charalambous C1ORCID,Teyssandier J1,Libert A-S1

Affiliation:

1. naXys, Department of Mathematics, University of Namur , Rue de Bruxelles 61, B-5000 Namur, Belgium

Abstract

ABSTRACT Planetary formation theories and, more specifically, migration models predict that planets can be captured in mean-motion resonances (MMRs) during the disc phase. The distribution of period ratios between adjacent planets shows an accumulation in the vicinity of the resonance, which is not centred on the nominal resonance but instead presents an offset slightly exterior to it. Here, we extend on previous works by thoroughly exploring the effect of different disc and planet parameters on the resonance offset during the disc migration phase. The dynamical study is carried out for several first-order MMRs and for both low-mass Earth-like planets undergoing type-I migration and giant planets evolving under type-II migration. We find that the offset varies with time during the migration of the two-planet system along the apsidal corotation resonance family. The departure from the nominal resonance increases for higher planetary masses and stronger eccentricity damping. In the Earth to super-Earth regime, we find offset values in agreement with the observations when using a sophisticated modelling for the planet–disc interactions, where the damping time-scale depends on the eccentricity. This dependence causes a feedback that induces an increase of the resonance offsets. Regarding giant planets, the offsets of detected planet pairs are well reproduced with a classical K-factor prescription for the planet–disc interactions when the eccentricity damping rate remains low to moderate. In both regimes, eccentricities are in agreement with the observations too. As a result, planet–disc interactions provide a generic channel to generate the offsets found in the observations.

Funder

FNRS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3