Deep learning Bayesian inference for low-luminosity active galactic nuclei spectra

Author:

Almeida Ivan1ORCID,Duarte Roberta1,Nemmen Rodrigo1ORCID

Affiliation:

1. Departamento de Astronomia, Instituto de Astronomia, Universidade de São Paulo, Geofísica e Ciências Atmosféricas,, São Paulo, SP 05508-090, Brazil

Abstract

ABSTRACT Most active supermassive black holes in present-day galaxies are underfed and consist of low-luminosity active galactic nuclei (LLAGN). LLAGNs display complex multiwavelength broadband spectral energy distributions (SED), dominated by non-thermal processes which are explained to first order by a radiatively inefficient accretion flow (RIAF) and a relativistic jet. Due to the computational cost of generating such SEDs, it has not been hitherto possible to perform statistical fits to observed broadband SEDs, since such procedures require generating many thousands of models on-the-fly. Here, we have used a deep learning (DL) method to interpolate a large grid consisting of dozens of thousands of model SEDs for RIAFs and jets covering the parameter space appropriate for LLAGNs. Not only the DL method computes accurate models, it does so hundreds of thousands of times faster than solving the underlying dynamical and radiative transfer equations. This brings RIAF and jet models to the realm of Bayesian inference. We demonstrate that the combination of a DL interpolator and a Markov chain Monte Carlo ensemble sampler can recover the ground truth parameters of Mock LLAGN data. We apply our model to existing radio-to-X-rays observations of three LLAGNs: M87, NGC 315, and NGC 4261. We demonstrate that our model can estimate the relevant parameters of these accreting black holes such as the mass accretion and outflow rate at a small fraction of the computational cost of previous approaches.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Nvidia

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3