Winds and feedback from supermassive black holes accreting at low rates: hydrodynamical treatment

Author:

Almeida Ivan1ORCID,Nemmen Rodrigo1

Affiliation:

1. Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil

Abstract

ABSTRACT Outflows produced by a supermassive black hole (SMBH) can have important feedback effects in its host galaxy. An unresolved question is the nature and properties of winds from SMBHs accreting at low rates in low-luminosity active galactic nuclei (LLAGNs). We performed two-dimensional numerical, hydrodynamical simulations of radiatively inefficient accretion flows on to non-spinning black holes. We explored a diversity of initial conditions in terms of rotation curves and viscous shear stress prescriptions, and evolved our models for very long durations of up to 8 × 105GM/c3. Our models resulted in powerful subrelativistic, thermally driven winds originated from the corona of the accretion flow at distances 10−100 GM/c2 from the SMBH. The winds reached velocities of up to 0.01c with kinetic powers corresponding to $0.1\!-\!1 {\,{\rm per\, cent}}$ of the rest-mass energy associated with inflowing gas at large distances, in good agreement with models of the ‘radio mode’ of AGN feedback. The properties of our simulated outflows are in broad agreement with observations of winds in quiescent galaxies that host LLAGNs, which are capable of heating ambient gas and suppressing star formation.

Funder

São Paulo Research Foundation

FAPESP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prospects for AGN Studies with AXIS: AGN Fueling—Resolving Hot Gas inside Bondi Radius of SMBHs;Universe;2024-06-27

2. Quenching star formation with low-luminosity AGN winds;Monthly Notices of the Royal Astronomical Society;2023-09-06

3. Black hole weather forecasting with deep learning: a pilot study;Monthly Notices of the Royal Astronomical Society;2022-03-22

4. Deep learning Bayesian inference for low-luminosity active galactic nuclei spectra;Monthly Notices of the Royal Astronomical Society;2021-11-23

5. On Spin dependence of the Fundamental Plane of black hole activity;Monthly Notices of the Royal Astronomical Society;2020-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3