Affiliation:
1. DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen, Denmark
Abstract
ABSTRACT
We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, that is, the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method employs normalizing flows, a deep neural network capable of learning arbitrary high-dimensional probability distributions, and inherently accounts, to an adequate extent, for the presence of interloper galaxies which are not bounded to a given cluster, the primary contaminant of dynamical mass measurements. We validate and showcase the performance of our neural flow approach to robustly infer the dynamical mass of clusters from a realistic mock cluster catalogue. A key aspect of our novel algorithm is that it yields the probability density function of the mass of a particular cluster, thereby providing a principled way of quantifying uncertainties, in contrast to conventional machine learning (ML) approaches. The neural network mass predictions, when applied to a contaminated catalogue with interlopers, have a mean overall logarithmic residual scatter of 0.028 dex, with a lognormal scatter of 0.126 dex, which goes down to 0.089 dex for clusters in the intermediate- to high-mass range. This is an improvement by nearly a factor of 4 relative to the classical cluster mass scaling relation with the velocity dispersion, and outperforms recently proposed ML approaches. We also apply our neural flow mass estimator to a compilation of galaxy observations of some well-studied clusters with robust dynamical mass estimates, further substantiating the efficacy of our algorithm.
Funder
Center for Dark Energy Biosphere Investigations
Carlsbergfondet
Villum Fonden
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献