The three hundred project: mapping the matter distribution in galaxy clusters via deep learning from multiview simulated observations

Author:

de Andres Daniel12ORCID,Cui Weiguang123ORCID,Yepes Gustavo12ORCID,De Petris Marco4,Ferragamo Antonio45,De Luca Federico4ORCID,Aversano Gianmarco6,Rennehan Douglas7ORCID

Affiliation:

1. Departamento de Física Teórica, Universidad Autónoma de Madrid , M-8, Cantoblanco, E-28049 Madrid , Spain

2. Centro de Investigación Avanzada en Física Fundamental, (CIAFF), Universidad Autónoma de Madrid , Cantoblanco, E-28049 Madrid , Spain

3. Institute for Astronomy, University of Edinburgh , Royal Observatory, Edinburgh EH9 3HJ , UK

4. Dipartimento di Fisica, Sapienza Universitá di Roma , Piazzale Aldo Moro, I-5-00185 Roma , Italy

5. Instituto de Astrofísica de Canarias (IAC) , E-38205 La Laguna , Spain

6. EURANOVA , ​Rue Emile Francqui 4, 1435 Mont-Saint-Guibert , Belgium

7. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010 , USA

Abstract

ABSTRACT A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions that introduce an un-preferred bias. In this work, we, for the first time, propose a deep learning method based on the U-Net architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at multiwavelengths. The model is trained with a large data set of simulated images from clusters of the three hundred project. Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo mass is almost unbiased, around 1 per cent for the best result from multiview, and the scatter is also very small, basically within 3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the overall matter distribution in galaxy clusters, which can complement the lensing method.

Funder

Ministerio de Ciencia e Innovación

STFC

Comunidad de Madrid

Sapienza Università di Roma

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3