Intermediate- and high-velocity clouds in the Milky Way – II. Evidence for a Galactic fountain with collimated outflows and diffuse inflows

Author:

Marasco Antonino1ORCID,Fraternali Filippo2,Lehner Nicolas3,Howk J Christopher3

Affiliation:

1. INAF – Osservatorio Astrofisico di Arcetri , Largo E. Fermi 5, I-50127 Firenze, Italy

2. Kapteyn Astronomical Institute, University of Groningen , Postbus 800, NL-9700 AV Groningen, the Netherlands

3. Department of Physics, University of Notre Dame , Notre Dame, IN 46556, USA

Abstract

ABSTRACT We model the kinematics of the high- and intermediate-velocity clouds (HVCs and IVCs) observed in absorption towards a sample of 55 Galactic halo stars with accurate distance measurements. We employ a simple model of a thick disc whose main free parameters are the gas azimuthal, radial, and vertical velocities (vϕ, vR, and vz), and apply it to the data by fully accounting for the distribution of the observed features in the distance–velocity space. We find that at least two separate components are required to reproduce the data. A scenario where the HVCs and the IVCs are treated as distinct populations provides only a partial description of the data, which suggests that a pure velocity-based separation may give a biased vision of the gas physics at the Milky Way’s disc–halo interface. Instead, the data are better described by a combination of an inflow component and an outflow component, both characterized by rotation with vϕ comparable to that of the disc and vz of $50\!-\!100\, {\rm km\, s}^{-1}$. Features associated with the inflow appear to be diffused across the sky, while those associated with the outflow are mostly confined within a bicone pointing towards (l = 220°, b = +40°) and (l = 40°, b = −40°). Our findings indicate that the lower ($|z| \lesssim 10\, {\rm kpc}$) Galactic halo is populated by a mixture of diffuse inflowing gas and collimated outflowing material, which are likely manifestations of a galaxy-wide gas cycle triggered by stellar feedback, that is, the galactic fountain.

Funder

INAF

NASA

Space Telescope Science Institute

ESA

European Space Agency

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3