Most of the cool CGM of star-forming galaxies is not produced by supernova feedback

Author:

Afruni Andrea1,Fraternali Filippo1,Pezzulli Gabriele12

Affiliation:

1. Kapteyn Astronomical Institute, University of Groningenxs,Landleven 12, 9747 AD Groningen, The Netherlands

2. Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

Abstract

Abstract The characterization of the large amount of gas residing in the galaxy halos, the so called circumgalactic medium (CGM), is crucial to understand galaxy evolution across cosmic time. We focus here on the the cool (T ∼ 104 K) phase of this medium around star-forming galaxies in the local universe, whose properties and dynamics are poorly understood. We developed semi-analytical parametric models to describe the cool CGM as an outflow of gas clouds from the central galaxy, as a result of supernova explosions in the disc (galactic wind). The cloud motion is driven by the galaxy gravitational pull and by the interactions with the hot (T ∼ 106 K) coronal gas. Through a bayesian analysis, we compare the predictions of our models with the data of the COS-Halos and COS-GASS surveys, which provide accurate kinematic information of the cool CGM around more than 40 low-redshift star-forming galaxies, probing distances up to the galaxy virial radii. Our findings clearly show that a supernova-driven outflow model is not suitable to describe the dynamics of the cool circumgalactic gas. Indeed, to reproduce the data, we need extreme scenarios, with initial outflow velocities and mass loading factors that would lead to unphysically high energy coupling from the supernovae to the gas and with supernova efficiencies largely exceeding unity. This strongly suggests that, since the outflows cannot reproduce most of the cool gas absorbers, the latter are likely the result of cosmological inflow in the outer galaxy halos, in analogy to what we have previously found for early-type galaxies.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3