Unsupervised machine learning for transient discovery in deeper, wider, faster light curves

Author:

Webb Sara12ORCID,Lochner Michelle345ORCID,Muthukrishna Daniel6ORCID,Cooke Jeff12ORCID,Flynn Chris12ORCID,Mahabal Ashish7ORCID,Goode Simon12ORCID,Andreoni Igor7ORCID,Pritchard Tyler8ORCID,Abbott Timothy M C9ORCID

Affiliation:

1. Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail Number H29, PO Box 218, Hawthorn, VIC 3122, Australia

2. ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), VIC 3122, Australia

3. Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town 7535, South Africa

4. African Institute of Mathematical Sciences, Muizenburg, Cape Town 7950, South Africa

5. South African Radio Astronomical Observatory, Observatory, Cape Town 7295, South Africa

6. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

7. Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

8. Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA

9. NOIRLab, Mid-Scale Observatories/Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile

Abstract

ABSTRACT Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering technique and the astronomaly package. As proof of concept, we evaluate 85 553 min-cadenced light curves collected over two ∼1.5 h periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of astronomaly, we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across a range of catalogues from within the fields, and find a further seven uncatalogued variables and two stellar flare events, including a rarely observed ultrafast flare (∼5 min) from a likely M-dwarf.

Funder

Kavli Foundation

National Science Foundation

Simons Foundation

Australian Research Council

National Research Foundation

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3