Evidence of chromospheric molecular hydrogen emission in a solar flare observed by the IRIS satellite

Author:

Mulay Sargam M1ORCID,Fletcher Lyndsay12ORCID

Affiliation:

1. School of Physics and Astronomy, University of Glasgow, G12 8QQ Glasgow, UK

2. Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo, Norway

Abstract

ABSTRACT We have carried out the first comprehensive investigation of enhanced line emission from molecular hydrogen, H2 at 1333.79 Å, observed at flare ribbons in SOL2014-04-18T13:03. The cool H2 emission is known to be fluorescently excited by Si iv 1402.77 Å UV radiation and provides a unique view of the temperature minimum region (TMR). Strong H2 emission was observed when the Si iv 1402.77 Å emission was bright during the flare impulsive phase and gradual decay phase, but it dimmed during the GOES peak. H2 line broadening showed non-thermal speeds in the range 7–18 $\rm {km\,s}^{-1}$, possibly corresponding to turbulent plasma flows. Small red (blue) shifts, up to 1.8 (4.9) $\rm {km\,s}^{-1}$ were measured. The intensity ratio of Si iv 1393.76 Å and Si iv 1402.77 Å confirmed that plasma was optically thin to Si iv (where the ratio = 2) during the impulsive phase of the flare in locations where strong H2 emission was observed. In contrast, the ratio differs from optically thin value of 2 in parts of ribbons, indicating a role for opacity effects. A strong spatial and temporal correlation between H2 and Si iv emission was evident supporting the notion that fluorescent excitation is responsible.

Funder

Science and Technology Facilities Council

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solar Flare Spectroscopy;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Hard X-rays from the deep solar atmosphere;Astronomy & Astrophysics;2024-08

3. Small-scale magnetic flux emergence preceding a chain of energetic solar atmospheric events;Astronomy & Astrophysics;2024-06

4. Behaviour of molecular hydrogen emission in three solar flares;Monthly Notices of the Royal Astronomical Society;2023-10-10

5. Advances in 3D solar flare modelling;Astronomy & Geophysics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3