Star cluster formation in clouds with externally driven turbulence

Author:

Smith Jamie D1,Dale James E1,Jaffa Sarah E12,Krause Martin G H1

Affiliation:

1. Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire , College Lane, Hatfield, Hertfordshire AL109AB, UK

2. Advanced Research Computing, University College London , London WC1H 9NE, UK

Abstract

ABSTRACT Star clusters are known to be formed in turbulent molecular clouds. How turbulence is driven in molecular clouds and what effect this has on star formation is still unclear. We compare a simulation setup with turbulent driving everywhere in a periodic box with a setup where turbulence is only driven around the outside of the box. We analyse the resulting gas distribution, kinematics, and the population of stars that are formed from the cloud. Both setups successfully produce a turbulent velocity field with a power-law structure function, the externally driven cloud has a more central, monolithic, clump, while the fully driven cloud has many smaller, more dispersed, clumps. The star formation follows the cloud morphology producing large clusters, with high star-forming efficiency in the externally driven simulations and sparse individual star formation with much lower star formation efficiency in the fully driven case. We conclude that the externally driven method, which resembles a Global Hierarchical Collapse (GHC) scenario, produces star clusters that more closely match with observations.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2a Results: galaxy to cloud scales;Frontiers in Astronomy and Space Sciences;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3