An improved test of the binary black hole hypothesis for quasars with double-peaked broad Balmer lines

Author:

Doan Anh1ORCID,Eracleous Michael12ORCID,Runnoe Jessie C3ORCID,Liu Jia4ORCID,Mathes Gavin5,Flohic Helene M L G6

Affiliation:

1. Department of Astronomy & Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA

2. Institute of Gravitation and the Cosmos, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802, USA

3. Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109, USA

4. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

5. Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA

6. Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA

Abstract

ABSTRACT Velocity offsets in the broad Balmer lines of quasars and their temporal variations serve as indirect evidence for bound supermassive black hole binaries (SBHBs) at sub-parsec separations. In this work, we test the SBHB hypothesis for 14 quasars with double-peaked broad emission lines using their long-term (14–41 yr) radial velocity curves. We improve on the previous work by (i) using elliptical instead of circular orbits for the SBHBs, (ii) adopting a statistical model for radial velocity jitter, (iii) employing a Markov chain Monte Carlo method to explore the orbital parameter space efficiently and build posterior distributions of physical parameters, and (iv) incorporating new observations. We determine empirically that jitter comprises approximately Gaussian distributed fluctuations about the smooth radial velocity curves that are larger than the measurement errors by factors of a few. We initially treat jitter by enlarging the effective error bars and then verify this approach via a variety of Gaussian process models for it. We find lower mass limits for the hypothesized SBHBs in the range 108–1011 M⊙. For seven objects, the SBHB scenario appears unlikely based on goodness-of-fit tests. For two additional objects, the minimum SBHB masses are unreasonably large (>1010 M⊙), strongly disfavouring the SBHB scenario. Using constraints on the orbital inclination angle (which requires some assumptions) makes the minimum masses of four more objects unreasonably large. We also cite physical and observational arguments against the SBHB hypothesis for nine objects. We conclude that the SBHB explanation is not the favoured explanation of double-peaked broad emission lines.

Funder

National Geographic Society

National Science Foundation

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3