Hot phase generation by supernovae in ISM simulations: resolution, chemistry, and thermal conduction

Author:

Steinwandel Ulrich P12,Moster Benjamin P12ORCID,Naab Thorsten2,Hu Chia-Yu34ORCID,Walch Stefanie5

Affiliation:

1. Fakultät für Physik , Universitäts-Sternwarte München, LMU Munich, Scheinerstr 1, D-81679 München, Germany

2. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany

3. Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA

4. Max Planck Institute for Extraterrestrial Phyiscs, Gießenbachstr.1, D-85748 Garching, Germany

5. Physikalisches Institut der Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany

Abstract

ABSTRACT Supernovae (SNe) generate hot gas in the interstellar medium (ISM), help setting the ISM structure, and support the driving of outflows. It is important to resolve the hot gas generation for galaxy formation simulations at solar mass and sub-parsec resolution that realize individual SN explosions with ambient densities varying by several orders of magnitude in a realistic multiphase ISM. We test resolution requirements by simulating SN blast waves at three metallicities (Z = 0.01, 0.1, and 1 Z⊙), six densities and their respective equilibrium chemical compositions (n = 0.001–100 cm−3), and four mass resolutions (0.1–100 M⊙), in three dimensions. We include non-equilibrium cooling and chemistry, a homogeneous interstellar radiation field, and shielding with a modern pressure–energy smoothed particle hydrodynamics method including isotropic thermal conduction and a meshless-finite-mass solver. We find stronger resolution requirements for chemistry and hot phase generation than for momentum generation. While at 10 M⊙ the radial momenta at the end of the Sedov phase start converging, the hot phase generation and chemistry require higher resolutions to represent the neutral-to-ionized hydrogen fraction at the end of the Sedov phase correctly. Thermal conduction typically reduces the hot phase by 0.2 dex and has little impact on the chemical composition. In general, our 1 and 0.1 M⊙ results agree well with previous numerical and analytic estimates. We conclude that for the thermal energy injection SN model presented here resolutions higher than 10 M⊙ are required to model the chemistry, momentum, and hot phase generation in the multiphase ISM.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3