Costless correction of chain based nested sampling parameter estimation in gravitational wave data and beyond

Author:

Prathaban Metha123ORCID,Handley Will124ORCID

Affiliation:

1. Kavli Institute for Cosmology, Institute of Astronomy and Department of Physics, Madingley Road , Cambridge CB3 0HA , UK

2. Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue , Cambridge CB3 0HE , UK

3. Pembroke College, Trumpington Street , Cambridge CB2 1RF , UK

4. Gonville & Caius College, Trinity Street , Cambridge CB2 1TA , UK

Abstract

ABSTRACT Nested sampling parameter estimation differs from evidence estimation, in that it incurs an additional source of uncertainty. This uncertainty affects estimates of parameter means and credible intervals in gravitational wave analyses and beyond, and yet, it is typically not accounted for in standard uncertainty estimation methods. In this paper, we present two novel methods to quantify this uncertainty more accurately for any chain based nested sampler, using the additional likelihood calls made at run time in producing independent samples. Using injected signals of black hole binary coalescences as an example, we first show concretely that the usual uncertainty estimation method is insufficient to capture the true error bar on parameter estimates. We then demonstrate how the extra points in the chains of chain based samplers may be carefully utilized to estimate this uncertainty correctly, and provide a way to check the accuracy of the resulting error bars. Finally, we discuss how this uncertainty affects p–p plots and coverage assessments.

Funder

BEIS

STFC

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3