FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning

Author:

Kugel Roi1ORCID,Schaye Joop1ORCID,Schaller Matthieu12ORCID,Helly John C3,Braspenning Joey1,Elbers Willem3ORCID,Frenk Carlos S3,McCarthy Ian G4ORCID,Kwan Juliana4,Salcido Jaime4ORCID,van Daalen Marcel P1ORCID,Vandenbroucke Bert1ORCID,Bahé Yannick M15ORCID,Borrow Josh36ORCID,Chaikin Evgenii1ORCID,Huško Filip3ORCID,Jenkins Adrian3ORCID,Lacey Cedric G3ORCID,Nobels Folkert S J1ORCID,Vernon Ian7

Affiliation:

1. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden , the Netherlands

2. Lorentz Institute for Theoretical Physics, Leiden University , PO box 9506, NL-2300 RA Leiden , the Netherlands

3. Institute for Computational Cosmology, Department of Physics, University of Durham , South Road, Durham DH1 3LE , UK

4. Astrophysics Research Institute, Liverpool John Moores University , Liverpool L3 5RF , UK

5. Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Observatoire de Sauverny, CH-1290 Versoix , Switzerland

6. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA

7. Department of Mathematical Sciences, Durham University , Stockton Road, DH1 3LE Durham , UK

Abstract

ABSTRACT To fully take advantage of the data provided by large-scale structure surveys, we need to quantify the potential impact of baryonic effects, such as feedback from active galactic nuclei (AGN) and star formation, on cosmological observables. In simulations, feedback processes originate on scales that remain unresolved. Therefore, they need to be sourced via subgrid models that contain free parameters. We use machine learning to calibrate the AGN and stellar feedback models for the FLAMINGO (Fullhydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations) cosmological hydrodynamical simulations. Using Gaussian process emulators trained on Latin hypercubes of 32 smaller volume simulations, we model how the galaxy stellar mass function (SMF) and cluster gas fractions change as a function of the subgrid parameters. The emulators are then fit to observational data, allowing for the inclusion of potential observational biases. We apply our method to the three different FLAMINGO resolutions, spanning a factor of 64 in particle mass, recovering the observed relations within the respective resolved mass ranges. We also use the emulators, which link changes in subgrid parameters to changes in observables, to find models that skirt or exceed the observationally allowed range for cluster gas fractions and the SMF. Our method enables us to define model variations in terms of the data that they are calibrated to rather than the values of specific subgrid parameters. This approach is useful, because subgrid parameters are typically not directly linked to particular observables, and predictions for a specific observable are influenced by multiple subgrid parameters.

Funder

STFC

Durham University

Swiss National Science Foundation

Wellcome

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GA-NIFS: The core of an extremely massive protocluster at the epoch of reionisation probed with JWST/NIRSpec;Astronomy & Astrophysics;2024-08

2. The FLAMINGO simulation view of cluster progenitors observed in the epoch of reionization with JWST;Monthly Notices of the Royal Astronomical Society;2024-07-24

3. The baryon cycle in modern cosmological hydrodynamical simulations;Monthly Notices of the Royal Astronomical Society;2024-07-13

4. The FLAMINGO project: galaxy clusters in comparison to X-ray observations;Monthly Notices of the Royal Astronomical Society;2024-06-12

5. The many colours of the TNG100 simulation;Monthly Notices of the Royal Astronomical Society;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3