The baryon cycle in modern cosmological hydrodynamical simulations

Author:

Wright Ruby J1234ORCID,Somerville Rachel S2,Lagos Claudia del P34ORCID,Schaller Matthieu56ORCID,Davé Romeel78ORCID,Anglés-Alcázar Daniel29,Genel Shy210

Affiliation:

1. Department of Physics, University of Helsinki , Gustaf Hällströmin katu 2, FI-00014 Helsinki , Finland

2. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, New York, NY 10010 , USA

3. International Centre for Radio Astronomy Research, University of Western Australia , 7 Fairway, Crawley, WA 6009 , Australia

4. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)

5. Lorentz Institute for Theoretical Physics, Leiden University , PO Box 9506, NL-2300 RA Leiden , the Netherlands

6. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden , the Netherlands

7. Institute for Astronomy, University of Edinburgh , Royal Observatory, Edinburgh EH9 3HJ , UK

8. Department of Physics and Astronomy, University of the Western Cape , Bellville, Cape Town 7535 , South Africa

9. Department of Physics, University of Connecticut , 196 Auditorium Road, U-3046, Storrs, CT 06269 , USA

10. Columbia Astrophysics Laboratory, Columbia University , 550 West 120th Street, New York, NY 10027 , USA

Abstract

ABSTRACT In recent years, cosmological hydrodynamical simulations have proven their utility as key interpretative tools in the study of galaxy formation and evolution. In this work, we present a comparative analysis of the baryon cycle in three publicly available, leading cosmological simulation suites: EAGLE, IllustrisTNG, and SIMBA. While these simulations broadly agree in terms of their predictions for the stellar mass content and star formation rates of galaxies at $z\approx 0$, they achieve this result for markedly different reasons. In EAGLE and SIMBA, we demonstrate that at low halo masses ($M_{\rm 200c}\lesssim 10^{11.5}\, \mathrm{M}_{\odot }$), stellar feedback (SF)-driven outflows can reach far beyond the scale of the halo, extending up to $2\!-\!3\times R_{\rm 200c}$. In contrast, in TNG, SF-driven outflows, while stronger at the scale of the interstellar medium, recycle within the circumgalactic medium (within $R_{\rm 200c}$). We find that active galactic nucleus (AGN)-driven outflows in SIMBA are notably potent, reaching several times $R_{\rm 200c}$ even at halo masses up to $M_{\rm 200c}\approx 10^{13.5}\, \mathrm{M}_{\odot }$. In both TNG and EAGLE, AGN feedback can eject gas beyond $R_{\rm 200c}$ at this mass scale, but seldom beyond $2\!-\!3\times R_{\rm 200c}$. We find that the scale of feedback-driven outflows can be directly linked with the prevention of cosmological inflow, as well as the total baryon fraction of haloes within $R_{\rm 200c}$. This work lays the foundation to develop targeted observational tests that can discriminate between feedback scenarios, and inform subgrid feedback models in the next generation of simulations.

Funder

European Research Council

Australian Research Council

NSF

Simons Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3