Single-dish 1-cm-band radio photometry of protoplanetary discs: few centimetre-sized dust grains?

Author:

Greaves Jane S1ORCID,Mason Brian2ORCID

Affiliation:

1. School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff CF24 3AA, UK

2. National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA

Abstract

ABSTRACT Radio-wavelength observations of protoplanetary discs can show whether large dust grains (pebbles) have formed on the pathway to aggregation of planetary cores. The 100-m Green Bank Telescope was used to make a four-subband (26–40 GHz) photometric survey of the Taurus and Ophiuchus regions, which is nearly complete for class II systems above fixed millimetre-flux thresholds. There is evidence of anomalous microwave emission in 40 per cent of the systems, indicating that radio observations of protoplanetary discs need good spectral coverage to distinguish the presence of dust. At most, one-quarter of the systems are seen to host pebbles, of radii as large as 1 cm. The lack of pebble-dominated systems suggests that this is a short-lived phase in particle size evolution, and/or that pebbles only grow in limited areas of the disc. Either case supports models where grains of centimetre size rapidly fragment and/or drift towards the star, potentially feeding growing planets. In the best-fitting systems, including the 26–40 GHz data raises the detected dust mass by up to an order of magnitude, and the mass distribution of the discs may be flatter. Both of these phenomena could help to solve the ‘missing mass’ problem, where the solid budget in protoplanetary discs is compared with the substantial requirements of extrasolar-planet systems.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3