First JVLA Radio Observation on PDS 70

Author:

Liu Hauyu BaobabORCID,Casassus SimonORCID,Dong RuobingORCID,Doi KiyoakiORCID,Hashimoto JunORCID,Muto Takayuki

Abstract

Abstract PDS 70 is a protoplanetary system that hosts two actively accreting gas giants, namely, PDS 70b and PDS 70 c. The system has a ∼60–100 au dusty ring that has been resolved by the Atacama Large Millimeter/Submillimeter Array (ALMA), along with circumplanetary disks around the two gas giants. Here, we report the first Karl G. Jansky Very Large Array (JVLA) Q- (40–48 GHz), Ka- (29–37 GHz), K- (18–26 GHz), and X- (8–12 GHz) bands' continuum observations, and the complementary ALMA Bands 3 (∼98 GHz) and 4 (∼145 GHz) observations towards PDS 70. The dusty ring appears azimuthally asymmetric in our ALMA images. We obtained firm detections at Ka and K bands without spatially resolving the source; we obtained a marginal detection at Q band, and no detection at X band. The spectral indices (α) are 5 ± 1 at 33–44 GHz and 0.6 ± 0.2 at 22–33 GHz. At 10–22 GHz, the conservative lower limit of α is 1.7. The 33–44 GHz flux density is likely dominated by the optically thin thermal emission of grown dust with ≳1 mm maximum grain sizes, which may be associated with the azimuthally asymmetric substructure induced by planet–disk interaction. Since PDS 70 was not detected at X band, we found it hard to explain the low spectral index at 22–33 GHz only with free–free emission. Hence, we attribute the dominant emission at 22–33 GHz to the emission of spinning nano-meter-sized dust particles, while free–free emission may partly contribute to emission at this frequency range. In some protoplanetary disks, the emission of spinning nano-meter-sized dust particles may resemble the 20–50 GHz excess in the spectra of millimeter-sized dust. The finding of strong continuum emission of spinning nano-meter-sized particles can complicate the procedure of constraining the properties of grown dust. Future high resolution, multifrequency JVLA/Next Generation Very Large Array and Square Kilometer Array observations may shed light on this issue.

Funder

National Science and Technology Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3