The flickering radio jet from the quiescent black hole X-ray binary A0620-00

Author:

dePolo Donna L1ORCID,Plotkin Richard M1ORCID,Miller-Jones James C A2ORCID,Strader Jay3,Maccarone Thomas J4,O’Doherty Tyrone N2,Chomiuk Laura3,Gallo Elena5

Affiliation:

1. Physics Department, University of Nevada , Reno, 1664 N. Virginia St., Reno NV 89557, USA

2. International Centre for Radio Astronomy Research-Curtin University , Perth WA 6845, Australia

3. Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University , East Lansing, MI 48824, USA

4. Department of Physics and Astronomy, Texas Tech University , Lubbock TX 79409-1051, USA

5. Department of Astronomy, University of Michigan , 1085 S University, Ann Arbor, MI 48109, USA

Abstract

ABSTRACT Weakly accreting black hole X-ray binaries launch compact radio jets that persist even in the quiescent spectral state, at X-ray luminosities ≲ 10−5 of the Eddington luminosity. However, radio continuum emission has been detected from only a few of these quiescent systems, and little is known about their radio variability. Jet variability can lead to misclassification of accreting compact objects in quiescence, and affects the detectability of black hole X-ray binaries in next-generation radio surveys. Here we present the results of a radio monitoring campaign of A0620 − 00, one of the best-studied and least-luminous known quiescent black hole X-ray binaries. We observed A0620 − 00 at 9.8 GHz using the Karl G Jansky Very Large Array on 31 epochs from 2017 to 2020, detecting the source $\sim 75{{\ \rm per\, cent}}$ of the time. We see significant variability over all time-scales sampled, and the observed flux densities follow a lognormal distribution with μ = 12.5 μJy and σ = 0.22 dex. In no epoch was A0620 − 00 as bright as in 2005 (51 ± 7 μJy), implying either that this original detection was obtained during an unusually bright flare, or that the system is fading in the radio over time. We present tentative evidence that the quiescent radio emission from A0620 − 00 is less variable than that of V404 Cyg, the only other black hole binary with comparable data. Given that V404 Cyg has a jet radio luminosity ∼20 times higher than A0620 − 00, this comparison could suggest that less luminous jets are less variable in quiescence.

Funder

National Science Foundation

Associated Universities, Inc.

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing the jet size of two black hole X-ray binaries in the hard state;Monthly Notices of the Royal Astronomical Society;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3