X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices

Author:

Carvalho G A1ORCID,Pilling S1

Affiliation:

1. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, São José dos Campos, SP, CEP 12244-000, Brazil

Abstract

ABSTRACT In this study, we employed broad-band X-rays (6–2000 eV) to irradiate the frozen acetone CH3COCH3, at the temperature of 12 K, with different photon fluences up to 2.7 × 1018 photons cm−2. Here, we consider acetone as a representative complex organic molecule (COM) present on interstellar ice grains. The experiments were conduced at the Brazilian Synchrotron facility (LNLS/CNPEN) employing infrared spectroscopy (FTIR) to monitor chemical changes induced by radiation in the ice sample. We determined the effective destruction cross-section of the acetone molecule and the effective formation cross-section for daughter species. Chemical equilibrium, obtained for fluence 2 × 1018 photons cm−2, and molecular abundances at this stage were determined, which also includes the estimates for the abundance of unknown molecules, produced but not detected, in the ice. Time-scales for ices, at hypothetical snow line distances, to reach chemical equilibrium around several compact and main-sequence X-ray sources are given. We estimate time-scales of 18 d, 3.6 and 1.8 months, 1.4 × 109–6 × 1011 yr, 600 and 1.2 × 107 yr, and 107 yr, for the Sun at 5 au, for O/B stars at 5 au, for white dwarfs at 1 LY, for the Crab pulsar at 2.25 LY, for Vela pulsar at 2.25 LY, and for Sagittarius A* at 3 LY, respectively. This study improves our current understanding about radiation effects on the chemistry of frozen material, in particular, focusing for the first time, the effects of X-rays produced by compact objects in their eventual surrounding ices.

Funder

Fundação Valeparaibana de Ensino

Conselho Nacional de Dsenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Laboratório Nacional de Luz Síncrotron

Centro Nacional de Pesquisa em Energia e Materiais

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3