Chemical evolution of electron-bombarded crystalline water ices at different temperatures using the procoda code

Author:

Pilling S1,da Silveira C H1,Ojeda-Gonzalez A1

Affiliation:

1. Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba , São José dos Campos 12244-000, SP , Brazil

Abstract

Abstract Water ices are a common component of cold space environments, including molecular and protostellar clouds, and the frozen surfaces of moons, planets, and comets. When exposed to ionizing and/or thermal processing, they become a nursery for new molecular species and are also responsible for their desorption to the gas-phase. Crystalline water ice, produced by the deposition of gaseous water at warm (80–150 K) surfaces or by the heating of cold amorphous water ice (up to ∼150 K), is also regularly detected by astronomical observations. Here, we employed the procoda code to map the chemical evolution of 5 keV electron-bombarded crystalline water-ices at different temperatures (12, 40, 60 and 90 K). The chemical network considered a total of 61 coupled reactions involving nine different chemical species within the ice. Among the results, we observe that the average calculated effective rate constants for radiation-induced dissociation decrease as the ice´s temperature increases. The abundance of molecular species in the ice at chemical equilibrium and its desorption to gas-phase depend on both the temperature of the ice. H2O molecules are the dominant desorbed species, with a desorption yield of about 1 molecule per 100 electrons, which seems to be enhanced for warmer crystalline ices. The obtained results can be employed in astrochemical models to simulate the chemical evolution of interstellar and planetary environments. These findings have implications for astrochemistry and astrobiology, providing insight into crucial chemical processes and helping us understand the chemistry in cold regions in space.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3