High-fidelity reproduction of central galaxy joint distributions with neural networks

Author:

Rodrigues Natália V N1ORCID,de Santi Natalí S M12,Montero-Dorta Antonio D3ORCID,Abramo L Raul1

Affiliation:

1. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo , Rua do Matão 1371, CEP 05508-090, São Paulo, Brazil

2. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, New York, NY 10010, USA

3. Departamento de Física, Universidad Técnica Federico Santa María , Casilla 110-V, Avenida España 1680, Valparaíso, Chile

Abstract

ABSTRACT The relationship between galaxies and haloes is central to the description of galaxy formation and a fundamental step towards extracting precise cosmological information from galaxy maps. However, this connection involves several complex processes that are interconnected. Machine Learning methods are flexible tools that can learn complex correlations between a large number of features, but are traditionally designed as deterministic estimators. In this work, we use the IllustrisTNG300-1 simulation and apply neural networks in a binning classification scheme to predict probability distributions of central galaxy properties, namely stellar mass, colour, specific star formation rate, and radius, using as input features the halo mass, concentration, spin, age, and the overdensity on a scale of 3 h−1 Mpc. The model captures the intrinsic scatter in the relation between halo and galaxy properties, and can thus be used to quantify the uncertainties related to the stochasticity of the galaxy properties with respect to the halo properties. In particular, with our proposed method, one can define and accurately reproduce the properties of the different galaxy populations in great detail. We demonstrate the power of this tool by directly comparing traditional single-point estimators and the predicted joint probability distributions, and also by computing the power spectrum of a large number of tracers defined on the basis of the predicted colour–stellar mass diagram. We show that the neural networks reproduce clustering statistics of the individual galaxy populations with excellent precision and accuracy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

FONDECYT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3