Constraining Cosmology with Machine Learning and Galaxy Clustering: The CAMELS-SAM Suite

Author:

Perez Lucia A.ORCID,Genel ShyORCID,Villaescusa-Navarro FranciscoORCID,Somerville Rachel S.ORCID,Gabrielpillai AustenORCID,Anglés-Alcázar DanielORCID,Wandelt Benjamin D.ORCID,Yung L. Y. AaronORCID

Abstract

Abstract As the next generation of large galaxy surveys come online, it is becoming increasingly important to develop and understand the machine-learning tools that analyze big astronomical data. Neural networks are powerful and capable of probing deep patterns in data, but they must be trained carefully on large and representative data sets. We present a new “hump” of the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project: CAMELS-SAM, encompassing one thousand dark-matter-only simulations of (100 h −1 cMpc)3 with different cosmological parameters (Ω m and σ 8) and run through the Santa Cruz semi-analytic model for galaxy formation over a broad range of astrophysical parameters. As a proof of concept for the power of this vast suite of simulated galaxies in a large volume and broad parameter space, we probe the power of simple clustering summary statistics to marginalize over astrophysics and constrain cosmology using neural networks. We use the two-point correlation, count-in-cells, and void probability functions, and we probe nonlinear and linear scales across 0.68 < R <27 h −1 cMpc. We find our neural networks can both marginalize over the uncertainties in astrophysics to constrain cosmology to 3%–8% error across various types of galaxy selections, while simultaneously learning about the SC-SAM astrophysical parameters. This work encompasses vital first steps toward creating algorithms able to marginalize over the uncertainties in our galaxy formation models and measure the underlying cosmology of our Universe. CAMELS-SAM has been publicly released alongside the rest of CAMELS, and it offers great potential to many applications of machine learning in astrophysics: https://camels-sam.readthedocs.io.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust cosmological inference from non-linear scales with k-th nearest neighbour statistics;Monthly Notices of the Royal Astronomical Society;2023-11-03

2. Predicting the impact of feedback on matter clustering with machine learning in CAMELS;Monthly Notices of the Royal Astronomical Society;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3