Realistic galaxy images and improved robustness in machine learning tasks from generative modelling

Author:

Holzschuh Benjamin J12,O’Riordan Conor M2ORCID,Vegetti Simona2,Rodriguez-Gomez Vicente3ORCID,Thuerey Nils1

Affiliation:

1. Technische Universität München, Fakultät für Informatik , D-85748 Garching bei München, Germany

2. Max Planck Institut für Astrophysik , Karl-Schwarzschild-Straße 1, D-85748 Garching bei München, Germany

3. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México , Apdo. Postal 72-3, 58089 Morelia, Mexico

Abstract

ABSTRACT We examine the capability of generative models to produce realistic galaxy images. We show that mixing generated data with the original data improves the robustness in downstream machine learning tasks. We focus on three different data sets: analytical Sérsic profiles, real galaxies from the COSMOS survey, and galaxy images produced with the SKIRT code, from the IllustrisTNG simulation. We quantify the performance of each generative model, using the Wasserstein distance between the distributions of morphological properties (e.g. the Gini-coefficient, the asymmetry, and ellipticity), the surface brightness distribution on various scales (as encoded by the power spectrum), the bulge statistic, and the colour for the generated and source data sets. With an average Wasserstein distance (Fréchet Inception Distance) of 7.19 × 10−2 (0.55), 5.98 × 10−2 (1.45), and 5.08 × 10−2 (7.76) for the Sérsic, COSMOS and SKIRT data set, respectively, our best models convincingly reproduce even the most complicated galaxy properties and create images that are visually indistinguishable from the source data. We demonstrate that by supplementing the training data set with generated data, it is possible to significantly improve the robustness against domain-shifts and out-of-distribution data. In particular, we train a convolutional neural network to denoise a data set of mock observations. By mixing generated images into the original training data, we obtain an improvement of 11 and 45 per cent in the model performance regarding domain-shifts in the physical pixel size and background noise level, respectively.

Funder

European Research Council

Max Planck Society

COG

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3