High-cadence, early-time observations of core-collapse supernovae from the TESS prime mission

Author:

Vallely P J1ORCID,Kochanek C S12ORCID,Stanek K Z12,Fausnaugh M34,Shappee B J5

Affiliation:

1. Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

2. Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA

3. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

4. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

5. Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Abstract

ABSTRACT We present observations from the Transiting Exoplanet Survey Satellite (TESS) of twenty bright core-collapse supernovae with peak TESS-band magnitudes ≲18 mag. We reduce this data with an implementation of the image subtraction pipeline used by the All-Sky Automated Survey for Supernovae (ASAS-SN) optimized for use with the TESS images. In empirical fits to the rising light curves, we do not find strong correlations between the fit parameters and the peak luminosity. Existing semi-analytic models fit the light curves of the Type II supernovae well, but do not yield reasonable estimates of the progenitor radius or explosion energy, likely because they are derived for use with ultraviolet observations while TESS observes in the near-infrared. If we instead fit the data with numerically simulated light curves, the rising light curves of the Type II supernovae are consistent with the explosions of red supergiants. While we do not identify shock breakout emission for any individual event, when we combine the fit residuals of the Type II supernovae in our sample, we do find a >5σ flux excess in the ∼1 d before the start of the light-curve rise. It is likely that this excess is due to shock breakout emission, and that during its extended mission TESS will observe a Type II supernova bright enough for this signal to be detected directly.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3