Characterization of the ground layer of turbulence at Paranal using a robotic SLODAR system

Author:

Butterley T1ORCID,Wilson R W1ORCID,Sarazin M2,Dubbeldam C M1,Osborn J1ORCID,Clark P1ORCID

Affiliation:

1. Centre for Advanced Instrumentation, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

2. European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany

Abstract

ABSTRACT We describe the implementation of a robotic SLODAR instrument at the Cerro Paranal observatory. The instrument measures the vertical profile of the optical atmospheric turbulence strength, in 8 resolution elements, to a maximum altitude ranging between 100 and 500 m. We present statistical results of measurements of the turbulence profile on a total of 875 nights between 2014 and 2018. The vertical profile of the ground layer of turbulence is very varied, but in the median case most of the turbulence strength in the ground layer is concentrated within the first 50 m altitude, with relatively weak turbulence at higher altitudes up to 500 m. We find good agreement between measurements of the seeing angle from the SLODAR and from the Paranal DIMM seeing monitor, and also for seeing values extracted from the Shack–Hartmann active optics sensor of Very Large Telescope (VLT) Unit Telescope 1 (UT1), adjusting for the height of each instrument above ground level. The SLODAR data suggest that a median improvement in the seeing angle from 0.689 to 0.481 arcsec at wavelength 500 nm would be obtained by fully correcting the ground-layer turbulence between the height of the UTs (taken as 10 m) and altitude 500 m.

Funder

European Southern Observatory

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3